Cookbook
Cookbook \ Instructor \ Basics
- Basic use
- Specifying required and optional parameters via constructor
- Getters and setters
- Private vs public object field
- Basic use via mixin
- Fluent API
- Handling errors with `Maybe` helper class
- Mixed Type Property
- Modes
- Making some fields optional
- Automatic correction based on validation results
- Using attributes
- Using LLM API connection presets from config file
- Validation
- Custom validation using Symfony Validator
- Validation across multiple fields
- Validation with LLM
Cookbook \ Instructor \ Advanced
- Use custom configuration providers
- Context caching (structured output)
- Customize parameters of LLM driver
- Custom prompts
- Customize parameters via DSN
- Extracting arguments of function or method
- Logging monolog
- Logging psr
- Streaming partial updates during inference
- Providing example inputs and outputs
- Extracting scalar values
- Extracting sequences of objects
- Streaming
- Structures
Cookbook \ Instructor \ Troubleshooting
Cookbook \ Instructor \ LLM API Support
Cookbook \ Instructor \ Extras
- Extraction of complex objects
- Extraction of complex objects (Anthropic)
- Extraction of complex objects (Cohere)
- Extraction of complex objects (Gemini)
- Using structured data as an input
- Image processing - car damage detection
- Image to data (OpenAI)
- Image to data (Anthropic)
- Image to data (Gemini)
- Generating JSON Schema from PHP classes
- Generating JSON Schema from PHP classes
- Generating JSON Schema dynamically
- Create tasks from meeting transcription
- Translating UI text fields
- Web page to PHP objects
Cookbook \ Polyglot \ LLM Basics
- Working directly with LLMs
- Working directly with LLMs and JSON - JSON mode
- Working directly with LLMs and JSON - JSON Schema mode
- Working directly with LLMs and JSON - MdJSON mode
- Working directly with LLMs and JSON - Tools mode
- Generating JSON Schema from PHP classes
- Generating JSON Schema from PHP classes
Cookbook \ Polyglot \ LLM Advanced
Cookbook \ Polyglot \ LLM Troubleshooting
Cookbook \ Polyglot \ LLM API Support
Cookbook \ Polyglot \ LLM Extras
Cookbook \ Prompting \ Zero-Shot Prompting
Cookbook \ Prompting \ Few-Shot Prompting
Cookbook \ Prompting \ Thought Generation
Cookbook \ Prompting \ Miscellaneous
- Arbitrary properties
- Consistent values of arbitrary properties
- Chain of Summaries
- Chain of Thought
- Single label classification
- Multiclass classification
- Entity relationship extraction
- Handling errors
- Limiting the length of lists
- Reflection Prompting
- Restating instructions
- Ask LLM to rewrite instructions
- Expanding search queries
- Summary with Keywords
- Reusing components
- Using CoT to improve interpretation of component data
Cookbook \ Polyglot \ LLM Advanced
Context caching (text inference)
Overview
Instructor offers a simplified way to work with LLM providers’ APIs supporting caching (currently only Anthropic API), so you can focus on your business logic while still being able to take advantage of lower latency and costs.
Note 1: Instructor supports context caching for Anthropic API and OpenAI API.
Note 2: Context caching is automatic for all OpenAI API calls. Read more in the OpenAI API documentation.
Example
When you need to process multiple requests with the same context, you can use context caching to improve performance and reduce costs.
In our example we will be analyzing the README.md file of this Github project and generating its summary for 2 target audiences.
Copy
<?php
require 'examples/boot.php';
use Cognesy\Polyglot\Inference\Inference;
use Cognesy\Utils\Str;
$data = file_get_contents(__DIR__ . '/../../../README.md');
$inference = (new Inference)
//->wiretap(fn($e) => $e->print()) // wiretap to print all events
//->withDebugPreset('on') // debug HTTP traffic
->using('anthropic')
->withCachedContext(
messages: [
['role' => 'user', 'content' => 'Here is content of README.md file'],
['role' => 'user', 'content' => $data],
['role' => 'user', 'content' => 'Generate a short, very domain specific pitch of the project described in README.md. List relevant, domain specific problems that this project could solve. Use domain specific concepts and terminology to make the description resonate with the target audience.'],
['role' => 'assistant', 'content' => 'For whom do you want to generate the pitch?'],
],
);
$response = $inference
->with(
messages: [['role' => 'user', 'content' => 'founder of lead gen SaaS startup']],
options: ['max_tokens' => 512],
)
->response();
print("----------------------------------------\n");
print("\n# Summary for CTO of lead gen vendor\n");
print(" ({$response->usage()->cacheReadTokens} tokens read from cache)\n\n");
print("----------------------------------------\n");
print($response->content() . "\n");
assert(!empty($response->content()));
assert(Str::contains($response->content(), 'Instructor'));
assert(Str::contains($response->content(), 'lead', false));
assert($response->usage()->cacheReadTokens > 0 || $response->usage()->cacheWriteTokens > 0);
$response2 = $inference
->with(
messages: [['role' => 'user', 'content' => 'CIO of insurance company']],
options: ['max_tokens' => 512],
)
->response();
print("----------------------------------------\n");
print("\n# Summary for CIO of insurance company\n");
print(" ({$response2->usage()->cacheReadTokens} tokens read from cache)\n\n");
print("----------------------------------------\n");
print($response2->content() . "\n");
assert(!empty($response2->content()));
assert(Str::contains($response2->content(), 'Instructor'));
assert(Str::contains($response2->content(), 'insurance', false));
assert($response2->usage()->cacheReadTokens > 0);
?>
Assistant
Responses are generated using AI and may contain mistakes.